
Software Engineering Laboratory Projects and Guides
Version 1.0

Coding Style

General Comments: The following requirements are the minimum required to ensure
correct coding style for support and maintenance.

These guidelines have been adapted from a coding style guide authored by Prof. Karen
Davis, University of CIncinnati.

1. Identifiers
Identifiers shall be descriptive of their purpose or content. Single letter or non-meaningful names are not acceptable.
Use correct English spelling, do not haphazardly eliminate vowels. Use abbreviations or acronyms only if they are
commonly known.

2. Named Constants
Named constants shall be used rather than literal constants.

3. Modularity
The code shall be written in a modular style. Each module should have only one well-defined task.

4. Variable References
No non-local references to variables shall be made. Variables used in a module are either local or are parameters.

5. Data Abstraction
Good data abstraction shall be employed. The only access to an abstract data type shall be through the procedures or
functions that define the behavior of the abstract data type.

6. Partitioning
A complete program shall be partitioned into one or more modules each of which are represented as source code in a
separate named file. Each module shall have a module description written as comments at its beginning. The main
or root module shall also contain the program code documentation written as comments at the beginning of the file
before the module description.

6.1. Program Code Documentation
The format of the program code documentation is:

Purpose: A brief statement of the purpose of the program

Invocation
Syntax:

The specific command syntax for executing the
program and definition of each command line
option.

Description
:

A description of what the program does.

Copyright: A statement of the copyright including limitations
and owner.

Notes: Any additional notes about the program.

6.2. Module Description
The format of the module description is:

Module name: Name of the module.

Pupose: Brief purpose of the module relative to the program as a
whole.

Calling syntax: The specific calling syntax of the module in the form
proc(a,b,c,...) return x where return x applies only to
functions.

Inputs: List of procedure inputs and their definitions.

Outputs: List of prodedure outputs and their definitions.

Files used: List and definition of files read and/or written.

Description: A brief and complete description of the module. If module
implements a published algorithm, give reference.

Author: Name of primary author of the module.

Date: Date of last update to the module.

Revisions: List of revision descriptions with latest revision first.

Note that both program and module descriptions are a high-level description of what task the
code accomplishes. It should not mention data structures, program modules, or variables. It should be
understandable by an intelligent non-programmer.

Correct spelling and punctuation shall be used in all textual descriptions including comments written throughout the
code.

The description of program input and output contains the source/destination of all input and output, as well as the
formats used for each. BNF may be used for describing formats. A brief example of input and output is often useful.

7. Indention
Adequate use of whitespace shall be employed for indentation and separation of modules. Four spaces for
indentation is suggested, and uniform spacing to indicate levels of control flow is required.

8. Line Length
Long lines shall be broken and indented so that they may be easily read on a screen (no longer than 80 characters).

9. File Protection
Unless several students are working on a module, the files containing the module sources shall be set so that no one
but the individual programmer may have access to it. For example chmod 600 filename gives read/write access to
you and not the rest of the world under UNIX.

	1. Identifiers
	2. Named Constants
	3. Modularity
	4. Variable References
	5. Data Abstraction
	6. Partitioning
	6.1. Program Code Documentation
	6.2. Module Description

	7. Indention
	8. Line Length
	9. File Protection

